Introduction and recovery of point defects in electron-irradiated ZnO

نویسندگان

  • K. Saarinen
  • D. C. Look
  • G. C. Farlow
چکیده

We have used positron annihilation spectroscopy to study the introduction and recovery of point defects in electron-irradiated n-type ZnO. The irradiation Eel=2 MeV, fluence 6 1017cm−2 was performed at room temperature, and isochronal annealings were performed from 300 to 600 K. In addition, monochromatic illumination of the samples during low-temperature positron measurements was used in identification of the defects. We distinguish two kinds of vacancy defects: the Zn and O vacancies, which are either isolated or belong to defect complexes. In addition, we observe negative-ion-type defects, which are attributed to O interstitials or O antisites. The Zn vacancies and negative ions act as compensating centers and are introduced at a concentration VZn cion 2 1016cm−3. The O vacancies are introduced at a 10-times-larger concentration VO 3 1017cm−3 and are suggested to be isolated. The O vacancies are observed as neutral at low temperatures, and an ionization energy of 100 meV could be fitted with the help of temperature-dependent Hall data, thus indicating their deep donor character. The irradiation-induced defects fully recover after the annealing at 600 K, in good agreement with electrical measurements. The Zn vacancies recover in two separate stages, indicating that the Zn vacancies are parts of two different defect complexes. The O vacancies anneal simultaneously with the Zn vacancies at the later stage, with an activation energy of EV,O m =1.8±0.1 eV. The negative ions anneal out between the two annealing stages of the vacancies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irradiation with Neutrons and Formation of Simple Radiation Defects in Semiconductors

In this research, cobalt and nickel sulfide nanoparticles (NPs) were grown on AlMCM-41 matrix by using ion exchange method. The prepared samples were irradiated by thermalized neutron that emitted from Am-Be source up to fluencies (7.9+E9n/cm2). After that, X-ray diffraction (XRD), UV-Vis spectroscopy, Fourier transform...

متن کامل

Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO.

We have used positron annihilation spectroscopy to determine the nature and the concentrations of the open volume defects in as-grown and electron irradiated (E(el)=2 MeV, fluence 6 x 10(17) cm(-2)) ZnO samples. The Zn vacancies are identified at concentrations of [V(Zn)] approximately 2 x 10(15) cm(-3) in the as-grown material and [V(Zn)] approximately 2 x 10(16) cm(-3) in the irradiated ZnO. ...

متن کامل

The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods

In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...

متن کامل

Large anelasticity and associated energy dissipation in single-crystalline nanowires.

Anelastic materials exhibit gradual full recovery of deformation once a load is removed, leading to dissipation of internal mechanical energy. As a consequence, anelastic materials are being investigated for mechanical damping applications. At the macroscopic scale, however, anelasticity is usually very small or negligible, especially in single-crystalline materials. Here, we show that single-c...

متن کامل

Wettability Alteration of Sandstone and Carbonate Rocks by Using ZnO Nanoparticles in Heavy Oil Reservoirs

Efforts to enhance oil recovery through wettability alteration by nanoparticles have been attracted in recent years. However, many basic questions have been ambiguous up until now. Nanoparticles penetrate into pore volume of porous media, stick on the core surface, and by creating homogeneous water-wet area, cause to alter wettability. This work introduces the new concept of adding ZnO nanopart...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005